69 research outputs found

    Lateral & Steering Dynamics Estimation for Single Track Vehicle: Experimental Tests * *This work is supported by National Agency of Research under the framework VIROLO++.

    Get PDF
    International audienceThis paper deals with lateral and steering dynamics estimation of powered two-wheeled (PTW) vehicles. It presents an experimental validation of the Unknown Input Observer (UIO) addressed in Damon et al. (2016). A small scooter equipped with a multi-sensor architecture used to performed the test is introduced. A mathematical model of the scooter is derived using measured parameters on a Computer-Aided Design (CAD) model. Then the main design steps of the UIO are shortly remind. Finally, an urban driving scenario is presented to show the effectiveness of the proposed observer to estimate the lateral dynamics and the rider's action in real riding scenario

    Force feedback control based on VGSTA for single track riding simulator

    Full text link
    International audienceA direct application of the variable-gain super-twisting algorithm (VGSTA) is implemented for torque feedback on a handlebar of a riding simulator. This control strategy aims to compensate perturbations changing with the system states. Thanks to the good tracking performance and robustness/insensitiveness of such a control method, a precise estimation of the rider's torque applied on the riding simulator handlebar is possible. A first-order sliding-mode observer with stabilization is designed for the estimation of the unknown input rider action. Experimental implementation and analysis are provided to point-out the effectiveness of the proposed approach

    Road Geometry and Steering Reconstruction for Powered Two Wheeled Vehicles

    Get PDF
    International audienceThis paper deals with the estimation of both motorcycle lateral dynamics and road geometry reconstruction. A linear parameter varying (LPV) unknown input observer is designed to estimate the whole motorcycle dynamic states including road banking angles and the rider's steering torque taken into account the variation of the forward velocity. The road bank angle and the lateral slip angle are relevant parameters for improving rider's safety and handling, thus, it is interesting to estimate the road geometry. The observer convergence study is based on Lyapunov theory and the established convergence conditions are expressed in linear matrix inequalities (LMIs) formalism. The main idea consists in getting a set of conditions to design an observer transformed into a polytopic form, which estimates a part of the motorcycle dynamics states independently of some inputs (rider torque) and/or other states (zeros dynamics: roll angle) taken into account the variation of the longitudinal velocity

    Rider weight consideration for observer design with an application to the estimation of the lateral motorcycle dynamics and rider's action

    Get PDF
    International audienceThis paper highlights the necessity of the rider weight consideration during observer's design for motorcycle dynamics estimation or control. It presents a novel approach using a linear parameter varying (LPV) model associated with the well-know Takagi-Sugeno (TS) methods to derive a robust observer regarding the rider weight uncertainty. Then the proposed solution is illustrated with an application to a proposed observer in our previous works by comparing results of estimation between a nominal, a heavier and a lighter rider. Finally, a complete simulation scenario shows the ability of the proposed method to estimate the lateral motorcycle dynamic states considering an uncertain rider weight

    Motorcycle Riding Simulator: How to Estimate Robustly the Rider's Action

    Full text link

    Design and realization of a mechatronic platform for motorized two-wheeled vehicle riding simulation

    No full text
    Le sujet de thèse concerne la réalisation et la caractérisation d’un simulateur dynamique de véhicule deux-roues. La thèse est organisée en plusieurs parties essentielles. D’abord, une étude bibliographique est menée pour cerner la problématique de la simulation de conduite d’une manière générale en se focalisant sur les simulateurs de point de vue conception. Dans cette partie, on a pris connaissance des différentes architectures mécaniques utilisées auparavant ainsi que les problèmes liés. Le choix de l'architecture du simulateur est guidé par les besoins nécessaires d'avoir une perception suffisante au cours de la simulation de conduite. Notre objectif est de reproduire les effets inertiels (accélération, effort,..) les plus pertinents perçus dans une conduite réelle. Le second chapitre aborde la dynamique des véhicules et compare celle des deux-roues contre les automobiles. Des adaptations pour des modèles dynamiques de moto ont été présentées pour répondre à nos besoins en termes de rendus privilégiés. Le troisième chapitre présente les aspects conception, réalisation, caractérisation et identification du simulateur de moto mis au point dans le cadre de cette thèse. Il constitue la principale contribution de ces travaux de recherche. Les deux derniers chapitres sont dédiés aux algorithmes de contrôle/commande ainsi qu’essais expérimentaux sur la plateforme. Ces tests ont été réalisés en vue de la caractérisation et la validation de performances de toute la chaîne de simulation.This thesis deals with the design and realization of a dynamic mechanical platform intended to the motorcycle riding simulation. This dissertation is organized into several principal sections. First, a literature review is conducted to identify the driving simulation problematic in a general way by focusing on the simulator design. In this part, it was aware of the various mechanical architectures used previously as well as the related limitations. The choice of the simulator‘s mechanical architecture of is driven by the needs to have an sufficient perception during simulated driving situation. Our goal is to reproduce the most relevant inertial effects (acceleration, torque, ..) perceived in a real world driving. The second chapter discusses an exhaustive comparison between automotive vehicles dynamics against the two-wheeled vehicles against. Existing motorcycles dynamic models are adjusted and of have been adapted to meet our needs in terms of privileged inertial cues. The third chapter presents the design aspects, mechanical realization, characterization and identification of the motorcycle simulator developed within the framework of this thesis. It constitutes the main contribution of this research works. Finally, the last two chapters are dedicated to motion cueing /control algorithms and open-loop experimentation on the simulator’s platform. These tests were performed for the characterization and validation of performance of the entire simulation loop

    Conception et réalisation d'une plateforme mécatronique dédiée à la simulation de conduite des véhicules deux-roues motorisés.

    No full text
    This thesis deals with the design and realization of a dynamic mechanical platform intended to the motorcycle riding simulation. This dissertation is organized into several principal sections. First, a literature review is conducted to identify the driving simulation problematic in a general way by focusing on the simulator design. In this part, it was aware of the various mechanical architectures used previously as well as the related limitations. The choice of the simulator's mechanical architecture of is driven by the needs to have an sufficient perception during simulated driving situation. Our goal is to reproduce the most relevant inertial effects (acceleration, torque, ..) perceived in a real world driving. The second chapter discusses an exhaustive comparison between automotive vehicles dynamics against the two-wheeled vehicles against. Existing motorcycles dynamic models are adjusted and of have been adapted to meet our needs in terms of privileged inertial cues. The third chapter presents the design aspects, mechanical realization, characterization and identification of the motorcycle simulator developed within the framework of this thesis. It constitutes the main contribution of this research works. Finally, the last two chapters are dedicated to motion cueing /control algorithms and open-loop experimentation on the simulator's platform. These tests were performed for the characterization and validation of performance of the entire simulation loop.Le sujet de thèse concerne la réalisation et la caractérisation d'un simulateur dynamique de véhicule deux-roues. La thèse est organisée en plusieurs parties essentielles. D'abord, une étude bibliographique est menée pour cerner la problématique de la simulation de conduite d'une manière générale en se focalisant sur les simulateurs de point de vue conception. Dans cette partie, on a pris connaissance des différentes architectures mécaniques utilisées auparavant ainsi que les problèmes liés. Le choix de l'architecture du simulateur est guidé par les besoins nécessaires d'avoir une perception suffisante au cours de la simulation de conduite. Notre objectif est de reproduire les effets inertiels (accélération, effort,..) les plus pertinents perçus dans une conduite réelle. Le second chapitre aborde la dynamique des véhicules et compare celle des deux-roues contre les automobiles. Des adaptations pour des modèles dynamiques de moto ont été présentées pour répondre à nos besoins en termes de rendus privilégiés. Le troisième chapitre présente les aspects conception, réalisation, caractérisation et identification du simulateur de moto mis au point dans le cadre de cette thèse. Il constitue la principale contribution de ces travaux de recherche. Les deux derniers chapitres sont dédiés aux algorithmes de contrôle/commande ainsi qu'essais expérimentaux sur la plateforme. Ces tests ont été réalisés en vue de la caractérisation et la validation de performances de toute la chaîne de simulation

    Dynamics modeling of a Two-wheeled vehicle using Jourdain's principle

    No full text
    International audienceThis paper describes a modeling technique for developing the motion equation of a motorcycles vehicle. Based on the Jourdain's principle approach, the derived model presents a nice analytical formulation with recursive Jacobian matrices computation. The synthesized model takes in consideration the main forces and moments affecting the behavior of the motorcycle and allowing the simulation of 11DOF

    Conception et réalisation d une plateforme mécatronique dédiée à la simulation de conduite des véhicules deux-roues motorisés

    No full text
    Le sujet de thèse concerne la réalisation et la caractérisation d un simulateur dynamique de véhicule deux-roues. La thèse est organisée en plusieurs parties essentielles. D abord, une étude bibliographique est menée pour cerner la problématique de la simulation de conduite d une manière générale en se focalisant sur les simulateurs de point de vue conception. Dans cette partie, on a pris connaissance des différentes architectures mécaniques utilisées auparavant ainsi que les problèmes liés. Le choix de l'architecture du simulateur est guidé par les besoins nécessaires d'avoir une perception suffisante au cours de la simulation de conduite. Notre objectif est de reproduire les effets inertiels (accélération, effort,..) les plus pertinents perçus dans une conduite réelle. Le second chapitre aborde la dynamique des véhicules et compare celle des deux-roues contre les automobiles. Des adaptations pour des modèles dynamiques de moto ont été présentées pour répondre à nos besoins en termes de rendus privilégiés. Le troisième chapitre présente les aspects conception, réalisation, caractérisation et identification du simulateur de moto mis au point dans le cadre de cette thèse. Il constitue la principale contribution de ces travaux de recherche. Les deux derniers chapitres sont dédiés aux algorithmes de contrôle/commande ainsi qu essais expérimentaux sur la plateforme. Ces tests ont été réalisés en vue de la caractérisation et la validation de performances de toute la chaîne de simulation.This thesis deals with the design and realization of a dynamic mechanical platform intended to the motorcycle riding simulation. This dissertation is organized into several principal sections. First, a literature review is conducted to identify the driving simulation problematic in a general way by focusing on the simulator design. In this part, it was aware of the various mechanical architectures used previously as well as the related limitations. The choice of the simulator s mechanical architecture of is driven by the needs to have an sufficient perception during simulated driving situation. Our goal is to reproduce the most relevant inertial effects (acceleration, torque, ..) perceived in a real world driving. The second chapter discusses an exhaustive comparison between automotive vehicles dynamics against the two-wheeled vehicles against. Existing motorcycles dynamic models are adjusted and of have been adapted to meet our needs in terms of privileged inertial cues. The third chapter presents the design aspects, mechanical realization, characterization and identification of the motorcycle simulator developed within the framework of this thesis. It constitutes the main contribution of this research works. Finally, the last two chapters are dedicated to motion cueing /control algorithms and open-loop experimentation on the simulator s platform. These tests were performed for the characterization and validation of performance of the entire simulation loop.EVRY-Bib. électronique (912289901) / SudocSudocFranceF

    Unknown Dynamics Decoupling to Overcome Unmeasurable Premise Variables in Takagi–Sugeno Observer Design

    No full text
    International audienceThis letter discusses a new approach to overcome unmeasurable premise variables in observer synthesis for Takagi-Sugeno models. The main idea is based on the decoupling of the nonlinear dynamics in order to manage unmeasured state existing into the membership functions. The obtained structure is a system with membership functions subjected only to measured variables. The stability analysis of the observer is carried out using Lyapunov theory. The observer gains were computed from the resolution of the Linear Matrix Inequality constraints. The present result alleviates the strong conditions assumed in the design of observers for TS systems with unmeasurable premise variables. Simulation results are provided to demonstrate the effectiveness of the proposed approach
    • …
    corecore